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Some of the Complexities

Reality: There are flavors of uncontained, each with its own character
LOC fraction will depend on:
« Mission time (flight conditions, e
« Failure detection (warning tix
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Bl Historical Context

e ESAS
- LOC = 0.15*LOM

e Ares 1 Upper Stage Engine
— Early: All uncontained - Stage Explosion

» Focus was on environment characterization (blast, fragments)

- Late: 30% uncontained - Stage Explosion

« Based on analysis by Ken Gee

e SLS Complexity ' L-V :
0SS O
- Liquid first stage Crew

« Multiple engines
« Confined volume

— Strap-on boosters

All Failures
(Loss of Mission)

e SLS Core Stage Engine

— Early: 50% - Stage Explosion (weaker)
— Current: Why we’re here

Stage-Level
Explosions

Uncontained Failures



Abortability Example

e What is likelihood that, given a main engine turbo-pump burst failure, there will
serious injury or death of one or more crew members?

- What is the likelihood that there will be a “large” explosion (explosion of full stage)?
- What is the likelihood that a large explosion will critically damage the crew module?

- How does it vary with mission time?
- How does it vary with warning time?

Initial
Manifestation

X

! = j 2“ : —

e Note: importance of propagation depends on proximity of crew module.
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Simple Propagation Matrix Example

Selected initiator: Stage 1 turbopump failure
Paths go horizontally and then vertically

Stage 1

50%

15% Transition
D

TurboPump — Ptebabitities
g 70% 0% 5% 0%
Expl
) GG 10% 80% 0%
Initiators Explosion
20% HE Tank 10% 5%
Explosion
7
Stage 1 Tank 197
Rupture
100% Stage 1
Intertank CBM
Stage 2 Tank
Rupture
. Y
Failure
Event Tree Stage 1 TP Environments
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:. Simple Propagation Matrix Example

Stage 1 TP burst causes (leakage) aft skirt explosion
Stage 1 TP burst causes (fragment strike) He tank explosion

Stage 1 o 1o
TurboPump ) v
Stage 1 MCC 74% obe 5% 0%
Aft Ski
| A Skirt 1% 80% 0%
JExplosion _§ N _

! HETank
20% | a0 10% 5%

Explosion

Stage 1 Tank 0%
Rupture
100% Stage 1
Intertank CBM

Stage 2 Tank
Rupture

Event Tree Stage 1 TP

Aft Skirt Expl He Tank Expl
O O
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Simple Propagation Matrix Example

Stage 1

Aft skirt explosion causes (overpressure) Stage 1 tank rupture
He tank explosion causes (fragment) Stage 1 inter-tank CBM
TurboPump -

£a9% 0%
Stage 1 McC 7% b 5% 0%
Aft Ski
| A Skirt 4% 80% 0% |
Lxplosion _ 4 N \
| 1
20% HE Tank 0% 5% A
Explosion X
Stage 1 Tank . 3
Rupture ° ‘1‘
)
100% Stage 1 \
Intertank CBM !
Stage 2 Tank 5
Rupture \
\
1
1
\
Stage 1 TP \
Event Tree g |
Aft Skirt Expl He Tank Expl
Stage 1 Tank T Stage 1
Rupture ® | \iertank CBM
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Simple Propagation Matrix Example

Stage 1 o
55% 18%
TurboPump
70% 0po 5% 0%
| A Skirt 4% 80% 0% |
Lxplosion _ 4 N \
| 1
0% f HETank 0% 5% A
Explosion X
Stage 1 Tank \
Rupture ‘1‘
Stage 1 i
Intertank CBM \‘
Stage 2 Tank 5
Rupture \
\
1
1
\
Stage 1 TP \
Event Tree g |
Aft Skirt Expl He Tank Expl
Stage 1 Tank T Stage 1
Rupture ® | iertank CBM
l Stage 1 Tank
Rupture
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Stage 1 TP

Aft Skirt Expl He Tank Expl

T Stage 1

® Intertank CBM

Stage 1 Tank
Rupture

Rupture

Raw Event Tree

Stage 1 TP
He Tank Expl

Stage 1 Intertank CBM

Stage 1 Tank Rupture
Aft Skirt Expl

Event Chronology

Transition times introduced to
enable chronology-based pruning

Stage 1 TP

Aft Skirt Expl He Tank Expl

. T
Stage 1
Intertank CBM
Stage 1 Tank

Rupture

Pruned Event Tree
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-. Sample Monte Carlo Results

W Q@

Monte Carlo results are binned to produce the desired mapping
(branch splits) between the initial manifestation and the explosion(s)

Stage 1 Tank Rupture
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Transition Data Table Snippet

Pre-Launch  |First Stage Stagin Upper Stage  Upper Stage |Spocecraft
w, LAS Burn ging Burn, w/ LAS  Burn, no LAS |Staging
D PL FsB F55 USsL uswv uss Source Target Timing
I Stage 1 Stage 1MCC
Phase and propagation | = | vwo | vwo| voo| o o o [ B oot
TurboPump Expl
resistance sensitivities Sage 1 -
F6 90/30/15 90/30/15 90/50/15 off off off Aft Skirt Expl 0.1/0.1
TurboPump
5t 1 HE Tank
G6 25/15/5 | 25/15/5 | 25/15/5 o// of/ o// e an 0.1/0.1
TurboPump Explosion
F7 100/70/20 | 100/70/20 | 100/70/20 off oy off Stage 1 MCC Expl [Aft Skirt Expl 0.1/0.1
HE Tank
G7 5/0/0 5/0/0 5/0/0 off oy off Stage 1 MCCExpl , 0.01/0.01
Explosion
Stage 1 Tank
H7 100/15/0 15/5/0 off off oy off Stage 1 MCCExpl Rupture 0.01/0.01
17 of/ o// o// o// off off |stage 1mccexpl[ B8 L 0.1/0.1
g Plintertankcam |~

Mission Phase Code

I None

-Stage 1 Tank Rupture

[_IStage 1 Tank Rupture + Stage 2 Tank Rupture
[ Stage 1 Tank Rupture + Stage 1 Intertank CBM

Il Stage 1 Tank Rupture + Stage 1 Intertank CBM + Stage 2 Tank Rupture

(=]

0.1 0.2 03 0.4 0.5 0.6 0.7
Branch Probability

Pre-Launch

Stage 1 Boost

Stage 1 Shutdown/Separation

Mapping: Dependence on Phase
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(Tables)

Intermediate Environments

(Facilitate propagation)

Initiators/Initial Manifestations Element-Level Environments
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5-stage process
11 triggered environments (not including initiator)
4 triggered explosion types
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Energy Transfer Mode(s)

- Overpressure

- Kinetic Energy (Fragments) < -

- Shock & Vibration = W/
- Environment (pressure, temperature) WL

- Etc.

Source Severity

- Energy type: [KE]

- Magnitude: [Velocity and density]

- Uncertainties: [Velocity and density]
Target Vulnerability

- Energy type: [KE]

- Magnitude: [Size, Location, Limit velocity]
- Uncertainties: [Limit velocity]

Energy Decay

- Natural decay with distance: [1/d?]
— Obstructions: [%]

Example: TP Burst < He tank burst
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Engine Section Propagation

 Modes

— Fragments
» Uncontained engine failures
» COPV bursts (subsequent to being struck), assumed uniform in all directions

— Overpressure s N 3
* MCC explosion P 2: AR A Vempty o0m
« COPV burst SEH (e c -
— Leaks i ‘_.-»,, NN .| <—AJ26 Engines
« Propellant ’ INTETDSSS (2 Places)
* Hot Gas e\% Sy ! )
-TP pre-burners SN =
-MCC ;f’” ." [ ands, |
« COPV burst l 1y
* Pri = St |
P”mary Outcomes : #7,n j; e Ground
—LH2 Tank Rupture T Propellant
- Core nonCBM Antares User Guide Fill/Drain Ports
— ES Burst (rupture)

» Damage to nozzle propellant lines—> multiple engines uncontained or loss of thrust
— Multiple engines uncontained
» Many consequences

— Core loss of thrust
» LH2 tank rupture (when boosters on and burning)



= % Conclusions and Future Work

Status

e Propagation model has been implemented
- Complex interactive process modeled with a humber of simpler interactions
- Automatically generates potentially complex failure event sequences
e Advantages
- Facilitate communication with engineers regarding consequences of failure
- Enables complex mission phase behavior to be captured
- Tracks and accumulates failure evolution times (where available)
- Easy to set up easy problems but can be expanded to more complex problems

e Currently being used in support of the Space Launch System (SLS) and
Commercial Crew programs

Potential Enhancements

e More automated transition probability evaluation
e Integration with CAD-based simulation methodology
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=@ Antares Failure: October 28, 2014 Nasa

R.U.D.

Plume
changes

color (AMR) FTS @ T+20s

http://www.spaceflight101.com/cygnus-orb-3-mission-updates.html




% Orbital Sciences Antares Rocket

Payload Fairing
» Diameter: 3.9 meters (154 in.)

* Height' 9.9 meters (3520 in)

» Structure: Heneycomb Core. Composite Face
« Separation: Non-Contaminating Frangible Ring

Stage 1

« Two Aerojat AJ26 angines with indepandent thrust vectoring

« Liquid oxygen/RP fueled

« System development and integration by Crbital

« Core tank design and verification by KB Yuzhnoye
(Zens-derived heritage)

« Core tank producton by Yuzhmash

« Avionics Stage Controller uses
fight-proven Orbital MACH

O‘I:‘ Stage 2

\ . ATK CASTOR" 30B Solid

COMpOonents Mator with Thrust Vectoring
« Oroital MACH Avicnics
* 3-Axis ACS
Duel AJ-26 ;
Engines 7
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1@ 126 Engines

Antares powered by dual AJ-26 engines
- LOX-Kerosene
- Staged combustion

Both engines on this flight were manufactured for the
Soviet N1 rocket in the 1960s and 1970s

Conversion to AJ-26 involved:

- Updated electronics for new electromechanical valve
actuators

- Modifications to fuel systems

- Added hydraulic TVC system

Acceptance tests were performed for each engine

- One minute burn
- Failure in May during one of these acceptance tests
» Described as an explosion

- Failure in 2011
» Kerosene leak leading to fire
» Traced to stress corrosion cracks in metal 1

47EE
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